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LETTER TO THE EDITOR 

Ising model phase boundary? 

George A Baker Jr and Doochul Kim3 
Theoretical Division, Los Alamos Scientific Laboratory, University of California, Los 
Alamos, NM 87545, USA 

Received 14 January 1980 

Abstract. We compute, on the basis of available power series expansions, a large number of 
derivatives, with respect to the magnetic field, of the free energy for the two-dimensional 
spin-$ Ising model along the phase boundary H = 0, T <  T,. We find this series to be 
divergent, and so the phase boundary is a line of analytic singularities. The same analysis in 
three dimensions leads to the same conclusion, with lower precision. 

The nature of the possible singularity of the spin-; Ising model free energy along the 
first-order phase transition line H = 0, T < T, has been of considerable theoretical 
interest. In mean-field-type approximations, and in the exact solution for the Bethe 
lattice, the free energy of one phase, say H > 0, can be analytically continued through 
the H = 0 line to the ‘spinodal’ point, conceivably representing the metastable state. 
Gaunt and Baker (1970), on the basis of an examination of the series expansion then 
available, found no numerical evidence against this picture. On the other hand, Fisher 
(1967) suggested, based on the droplet model, that the H = 0 line might be a line of 
branch-point singularities. Recently Enting and Baxter (1979) obtained long activity 
series at two temperatures below the critical temperature for the square lattice and 
concluded that the behaviour of their coefficients is consistent with the existence of a 
line of essential singularities, as suggested by the renormalisation group approach of 
Klein et a1 (1976). Another possibility was proposed by Domb (1976), who modified 
the droplet approach and argued that the first singularity in the activity series is located 
beyond the H = 0 line and that the first singularity is one type of branch-point for low 
temperatures and a different type for temperatures closer to T,. Finally, recent rigorous 
results for the percolation problem (Kunz and Souillard 1978a, b) strongly suggest 
(Deylon 1979) that the H = 0 line is a line of singularities for T < T,. 

The purpose of this Letter is to show that the expansions of the free energy, or 
equivalently the magnetisation M (  T, H ) ,  around H = 0 give rise to divergent series for 
all T < T,. This result implies that there is a line of singularities exactly at H = 0, 
O< T < T,. We further show that the large-order behaviour of the expansion is 
consistent with the idea that, when M(T,  H) for H > 0 is continued into the complex H 
plane, there is a cut along the negative real axis across which the imaginary part of M 
has a finite discontinuity. 

t Work supported in part by the US Department of Energy and in part by the SNU-AID basic science 
program. 
$ Permanent address: Department of Physics, Seoul National University, Seoul 15 1, Korea. 
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We take @ ( U ,  k )  = (1 - M (  T, H))/2,  H > 0 as the basic quantity, where U = 
exp (-4p.T) and k = exp (-2@H), and consider the expansion 

n = l  

= f an(u)(-2h)", (2) 
n = O  

where h = pH. The coefficients a, = ( n  !)-' Inbr exist for all n when U # uC (Lebow- 
itz 1972). The approach taken by Enting and Baxter (1979) was to try to determine 
whether the radius of convergence of series (1) is exactly unity. Our approach is to 
investigate whether series (2) has a finite radius of convergence or not. If the 
magnetisation can be continued from h > O  to h <0, it is necessary that equation (2 )  
have a finite radius of convergence. We have determined the coefficients numerically 
using the available low-temperature series expansion data (Baxter and Enting 1979, 
Sykes et a1 1973, 1975). The best currently available series are for the square lattice. 
For each field derivative we have constructed various first-order integral approximants 
(Hunter and Baker 1979) to the series in U ,  and we have evaluated them at several 
temperatures. Some typical series, so obtained, for the square lattice are given in 
table 1. They have been cross-checked where possible against the series summation 
results of the high-field series of Enting and Baxter (1979). We plot in figure 1 the ratios 
of successive coefficients r,, = a,/a,-l as a function of n. The asymptotic behaviour of 
the r, is apparently linear, and we conclude that 

r, -A(n +no) as n +m, (3) 
where A = 0.096 * 0.001 and 24.5 * 0.5 for u/uC = 0.1 and 0.9 respectively. We found 
this behaviour for the whole range 0 < U < U,. The parameter A of equation (3) is 
strongly temperature-dependent and increases steadily as U + uC. In fact, if we assume 
the scaling behaviour near the critical point, 

(4) 

where p = $ and A = F, then we can determine the first several critical amplitudes (see 
also Essam and Hunter 1968). We have tabulated our estimates for the square lattice in 
table 1. From these estimates we may also estimate 

U ,  ( U )  - r , (1 - T/ T,)-" A + p ,  

A(u)  - (0.124 * 0*01)(1- T/ Tc)-A as T + T,. ( 5 )  

The parameter no seems to be relatively insensitive to U ,  and we estimate no = 0.1 f 0.2 
for all U < uC. The behaviour of the r, for the triangular lattice is found to be similar to 
that for the square lattice. Here we estimate A(u)-(O~125*0.015)(1- T/T,)-A and 

We have also considered the series for the three-dimensional lattices. Due to the 
relative shortness of the available series, our results are not as good as in two 
dimensions. However, we do find at least that the a, for the BCC and FCC lattices in the 
range 0.1 s U s 0-4 are consistent with equation (2) being a divergent series. 

If we assume that the series, equation (2) ,  is Borel-summable (Hardy 1949) and let 
B ( h )  be the Bore1 transform of M ( h ) ,  

I Z ~  = O* 0.5. 
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I 1 
3 - 

Table 1. The estimated values of a, (equation (2)) for U = 0 . 1 ~ ~  and 0 . 9 ~ ~  (U, = 3 -&) and 
r, (equation (4)) for the square lattice. The uncertainties are at most *l in the last digit 
shown unless otherwise indicated. 

2 -  

1 -  

n a,(u =O. lu , )  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

0.340676 X 
0,198419 x 
0.895862 x 
0.392154X 
0.194603 x 
0.115696X 
0.807868 x lo-’ 
0,641871 X IO-’ 
0,569247 x lo-’ 
0,557617 x lo-’ 
0.598638 x lo-’ 
0.699371 x 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

0.857637 
0,303338 X 10’ 
0.206224 X lo4 
0.200902 X lo6 
0.250383 X 10’ 
0.37716X 10” 

(0~66386*0*000035) x 10” 
(0~133496~0~000004)x  lo’’ 
(0~30173*0~000015) x 10’’ 
(0~7570*0*0006) X 10’’ 
(0.2086* 0.0003) x 10” 
(0*626*0*001)~ loz4 

n a,(u =O.lu,)  

13 0.883482X lo-’ 
14 0.120013 X 
15 0.174467 X 
16 0 . 2 7 0 2 9 ~  
17 0.44458 X 
18 (0.77381 *00.00002)~ 
19 (0~14209~0~00002)  x 
20 (0.27454 * 0.00005) x 
21 (0 .5568i0*0002)~  
22 ( 0 ~ 1 1 8 2 9 ~ 0 ~ 0 0 0 0 4 ) x  lo-’ 
23 (0.2627 i 0*0004) x IO-’ 
24 0.609 * 0.002) x lo-’ 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

0,638424 x lo-’’ 
0~110134X10-2 
0.37419X 
0.18226 X 
0 . 1 1 3 5 7 ~ 1 0 - ~  

(0.85542*0*00002) X 
0.7529 x 
0.7570 X 

(0+3SSS *0.00015) x 
0.1073 X 

(0.1478 * 0*0002) x 1 0-3 
(0~2214i0~0005)x  

’ Exact value 

* .  
I I I 1 

0 10 20  
n 

Figure 1. r,, = ~ , , / a , - ~  versus n for the two temperatures u/u ,  = 0.1 and 0.9 for the square 
lattice. The lower (upper) set of data are for u / u ,  = 0.1 (0.9) with the RHS (LHS) scale. 
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then the large-order behaviour implied by equation (3) gives us B ( h )  - (1 + 2Ah)-"+"O' 
as h+(2A)-'. This leading singularity in B adds to A? a term proportional to 
z F o ( 1 , l  +no; -2Ah), where 2Fo is a confluent hypergeometric function (Abramowitz 
and Stegun 1964). The function zFo (1, a ;  -2) has a cut on the negative real axis, and 
the imaginary part has the discontinuity -2.rr"2(I'(a))-1g-n exp ( -g- ' )  across the cut at 
z = -g < 0. Therefore, when we continue A?(h) for h > 0 into the complex h plane, we 
expect to find a discontinuity across the negative real axis proportional to 
i(-2Ah)-"C"0' exp [(2Ah)-'] as h + 0-. 

If one were to assume, following Enting and Baxter (1979), that the b, of equation 
(1) are of the form 

b, - n -'a "-, (7) 
then one can easily compute that 

as n +CO, 

If we com are equation (3) and (8), we may immediately conclude that CT = $, a = 

dimensions for T <  T, does not accord with our results. We remark that a direct 
investigation of series (1) by Pad6 methods indicates that the unit circle in the complex 
p plane is likely to be free of singularities except perhaps near p = *la 

exp (-2/ P A) and g = $-$no. Thus the simple assumption that g = 1 + 1/S = in two 
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